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Chapter 6
FUNDAMENTALS OF
CONVECTION



Objectives

Understand the physical mechanism of convection and its classification

Visualize the development of velocity and thermal boundary layers during
flow over surfaces

Gain a working knowledge of the dimensionless Reynolds, Prandtl, and
Nusselt numbers

Distinguish between laminar and turbulent flows, and gain an
understanding of the mechanisms of momentum and heat transfer in
turbulent flow

Derive the differential equations that govern convection on the basis of
mass, momentum, and energy balances, and solve these equations for
some simple cases such as laminar flow over a flat plate

Nondimensionalize the convection equations and obtain the functional
forms of friction and heat transfer coefficients

Use analogies between momentum and heat transfer, and determine
heat transfer coefficient from knowledge of friction coefficient



PHYSICAL MECHANISM OF CONVECTION
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FIGURE 6-1

Heat transfer from a hot surface to the
surrounding fluid by convection and
conduction.

Conduction and convection both
require the presence of a material
medium but convection requires
fluid motion.

Convection involves fluid motion as
well as heat conduction.

Heat transfer through a solid is
always by conduction.

Heat transfer through a fluid is by
convection in the presence of bulk
fluid motion and by conduction in
the absence of it.

Therefore, conduction in a fluid can
be viewed as the limiting case of
convection, corresponding to the
case of quiescent fluid.



The fluid motion enhances heat transfer, since it brings warmer and
cooler chunks of fluid into contact, initiating higher rates of conduction
at a greater number of sites in a fluid.

The rate of heat transfer through a fluid is much higher by convection
than it is by conduction.

In fact, the higher the fluid velocity, the higher the rate of heat transfer.
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Convection heat transfer strongly depends on the fluid properties
dynamic viscosity, thermal conductivity, density, and specific heat, as
well as the fluid velocity. It also depends on the geometry and the
roughness of the solid surface, in addition to the type of fluid flow (such
as being streamlined or turbulent).

Goory = W(T; — T,) (W/m?) Newton’s
. law of
Qoo = NA(T, — T,) (W) cooling

-

h = convection heat transfer coefficient. W/m? - °C
A = heat transfer surface area. m?
T, = temperature of the surface, °C

T., = temperature of the fluid sufficiently far from the surface, °C
Convection heat transfer coefficient, h: The rate of heat

transfer between a solid surface and a fluid per unit surface
area per unit temperature difference.



No-slip condition: Afluid in direct contact with a solid “sticks” to the surface
due to viscous effects, and there is no slip.

Boundary layer: The flow region adjacent to the wall in which the viscous
effects (and thus the velocity gradients) are significant.

The fluid property responsible for the no-slip condition and the development
of the boundary layer is viscosity.
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A fluid flowing over a stationary surface
comes to a complete stop at the surface

The development of a velocity because of the no-slip condition.
profile due to the no-slip condition

as a fluid flows over a blunt nose. 6




An implication of the no-slip condition is that heat transfer from the solid
surface to the fluid layer adjacent to the surface is by pure conduction,
since the fluid layer is motionless, and can be expressed as

o o7 _
Qeonv — Yeond — _kﬂuicl d—‘-,‘ (W/m~=)
IV ly=0

The determination of the convection heat transfer coefficient
when the temperature distribution within the fluid is known

— K1uia(9779y), =0
T.—T,

h = (W/m? - °C)

The convection heat transfer coefficient, in general, varies along the flow
(or x-) direction. The average or mean convection heat transfer coefficient
for a surface in such cases is determined by properly averaging the local
convection heat transfer coefficients over the entire surface area A, or
length L as
[ ("
h = N NoedA, and h = 7 h.dx

s /A, 10



Wilhelm Nusselt (1882-1957), was a
German engineer, born in Nuremberg,
Germany. He studied machinery at the
Technical Universities of Berlin-
Charlottenburg and Munchen and
conducted advanced studies in
mathematics and physics. His doctoral
thesis was on the “Conductivity of
[nsulating Materials™ which he
completed in 1907. In 1915, Nusselt
published his pioneering paper: The
Basic Laws of Heat Transfer, in which
he first proposed the dimensionless
agroups now known as the principal
parameters in the similarity theory of
heat transfer. His other famous works
were concerned with the film
condensation of steam on vertical
surfaces, the combustion of pulverized
coal and the analogy between heat and
mass transfer in evaporation. Among
his well known mathematical works
are the solutions for laminar heat
transfer in the entrance region of tubes
and for heat exchange in cross-flow,
and the basic theory of regenerators.



Nusselt Number

In convection studies, it iIs common practice to nhondimensionalize the governing
equations and combine the variables, which group together into dimensionless
numbers in order to reduce the number of total variables.

Nusselt number: Dimensionless convection heat transfer coefficient

hi,. Joony = NAT :
Nu = & AT Qeonv ~ hAT  hL — Nu
(;Icmnd =k T l';)"ca:rnf_l RAT/L k

L. characteristic length

,,, T,

e

The Nusselt number represents the
enhancement of heat transfer through

- Fluid ’t\d ﬁ‘““ a fluid layer as a result of convection
— layer~— “-»u relative to conduction across the same

— — fluid layer.
‘x. T The larger the Nusselt number, the
' more effective the convection.
AT=T,-T, A Nusselt number of Nu = 1 for a fluid
Heat transfer through a fluid layer layer represents heat transfer across
of thickness L and temperature the layer by pure conduction.

difference AT.



Convection in daily life

* We turn on the fan on hot
summer days to help our
body cool more effectively.
The higher the fan speed,
the better we feel.

Blowing
on food

« We stir our soup and blow
on a hot slice of pizza to
make them cool faster.

« The air on windy winter
days feels much colder
than it actually is.

FIGURE 6-7 « The simplest solution to

We resort to forced convection heating problems in
whenever we need to increase the rate electronics packaging is to
of heat transfer. use a large enough fan.
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CLASSIFICATION OF FLUID FLOWS

Viscous versus Inviscid Regions of Flow

Viscous flows: Flows in which the frictional effects are significant.

Inviscid flow regions: In many flows of practical interest, there are regions
(typically regions not close to solid surfaces) where viscous forces are
negligibly small compared to inertial or pressure forces.

Inviscid flow

region
l The flow of an originally
e eI A T i CRile 'l Uniform fluid stream
T T Tson aflat plate_, and
s (he regions of viscous
T flow (next to the plate
IGAURGL Bl 'A8 on both sides) and
region inviscid flow (away from

l the plate).

11



Internal versus External Flow

External flow: The flow of an unbounded fluid over a surface such
as a plate, a wire, or a pipe.

Internal flow: The flow in a pipe or duct if the fluid is completely
bounded by solid surfaces.

- Water flow in a pipe is
internal flow, and
airflow over a ball is
external flow .

« The flow of liquids in a
duct is called open-
channel flow if the duct
Is only partially filled
with the liquid and
there is a free surface.

External flow over a tennis ball, and the
turbulent wake region behind.
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Compressible versus Incompressible Flow

Incompressible flow: If the
density of flowing fluid remains
nearly constant throughout (e.g.,
liquid flow).

Compressible flow: If the density
of fluid changes during flow (e.g.,
high-speed gas flow)

When analyzing rockets, spacecratt,
and other systems that involve high-
speed gas flows, the flow speed is
often expressed by Mach number

VvV Speed of flow
Ma=—=

¢ Speed of sound

Ma =1 Sonic flow

Ma <1 Subsonic flow
Ma > 1 Supersonic flow
Ma >> 1 Hypersonic flow

c is the speed of sound whose
value is 346 m/s in air at room
temperature at sea level.

Gas flows can often be
approximated as incompressible
if the density changes are under
about 5 percent, which is usually
the case when Ma < 0.3.

Therefore, the compressibility
effects of air can be neglected at
speeds under about 100 m/s.

13



Laminar versus Turbulent Flow

Laminar flow: The highly
ordered fluid motion
characterized by smooth
layers of fluid. The flow of
high-viscosity fluids such as
oils at low velocities is
typically laminar.

Turbulent flow: The highly
disordered fluid motion that
typically occurs at high
velocities and is
characterized by velocity
fluctuations. The flow of low-
viscosity fluids such as air at
high velocities is typically
turbulent.

Transitional flow: A flow
that alternates between
being laminar and turbulent.
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Laminar, transitional, and turbulent flows.

14



Natural (or Unforced)
versus Forced Flow

Forced flow: Afluid is forced
to flow over a surface or in a

pipe by external means such
as a pump or a fan.

Natural flow: Fluid motion is
due to natural means such as
the buoyancy effect, which
manifests itself as the rise of
warmer (and thus lighter) fluid
and the fall of cooler (and thus
denser) fluid.

In this schlieren image, the rise of
lighter, warmer air adjacent to her body
indicates that humans and warm-
blooded animals are surrounded by
thermal plumes of rising warm air.

15



Steady versus Unsteady Flow

The term steady implies no change at a point with time.
The opposite of steady Is unsteady.

The term uniform implies no change with location over a
specified region.

The term periodic refers to the kind of unsteady flow in
which the flow oscillates about a steady mean.

Many devices such as turbines, compressors, boilers,
condensers, and heat exchangers operate for long periods
of time under the same conditions, and they are classified
as steady-flow devices.

16



One-, Two-, and Three-Dimensional Flows

A flow field is best characterized by its velocity distribution.

A flow is said to be one-, two-, or three-dimensional if the flow velocity
varies in one, two, or three dimensions, respectively.

However, the variation of velocity in certain directions can be small
relative to the variation in other directions and can be ignored.

Developing velocity

/

profile, Vir z)

Fully developed

velocity profile, Vir)
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b

Fully developed

The development of the velocity profile in a circular pipe. V = V(r, z)
and thus the flow is two-dimensional in the entrance region, and
becomes one-dimensional downstream when the velocity profile fully
develops and remains unchanged in the flow direction, V = V(r).
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VELOCITY BOUNDARY LAYER

Velocity boundary layer: The region of the flow above
the plate bounded by & in which the effects of the viscous
shearing forces caused by fluid viscosity are felt.

The boundary layer thickness, ¢, is typically defined as the
distance y from the surface at which u = 0.99V.

The hypothetical line of u = 0.99V divides the flow over a
plate into two regions:

Boundary layer region: The viscous effects and the
velocity changes are significant.

Irrotational flow region: The frictional effects are
negligible and the velocity remains essentially constant.

e Laminar boundary

—_— laver

Transition __, Turbulent boundary

—

region layer

Relative
velocities of
fluid layers

Vv < 1%
— >
—> i f Zero
— 0.99V —— velocity
—> A2 atthe
— f’f surface
FIGURE 6-15

The development of a boundary layer
on a surface is due to the no-slip
condition and friction.
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Turbulent
layer

Y Overlap layer
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Boundary layer thickness, &

A

T
T Viscous sublayer

FIGURE 6-14

The development of the boundary layer for flow over a flat plate, and the different flow regimes.
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Wall Shear Stress

A

I
Liquids

Viscosity

Y

Temperature

FIGURE 6-16

The viscosity of liquids decreases and
the viscosity of gases increases with
temperature.

Shear stress: Friction force per unit area.

The shear stress for most fluids is
proportional to the velocity gradient, and
the shear stress at the wall surface is
expressed as

du

Tw = M (N/m?)
dy |y=0

M dynamic viscosity
kg/m-s or N-s/m? or Pa-s
1 poise=0.1Pa-s

The fluids that obey the linear relationship
above are called Newtonian Fluids.

Most common fluids such as water, air,
gasoline, and oils are Newtonian fluids.

Blood and liquid plastics are examples of
non-Newtonian fluids. In this text we
consider Newtonian fluids only.
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Kinematic viscosity, 1 = wlp
m2/s or stoke
1 stoke =1 cm?/s = 0.0001 m?/s

The viscosity of a fluid is a measure of its resistance to deformation,
and it is a strong function of temperature.

Wall shear stress:

I',)11_;'1 o . L. _
(N/m?) friction coefficient or

T, = Cr— L -
2 skin friction coefficient

H

Friction force over the entire surface:

p /2

g

The friction coefficient is an important parameter in heat
transfer studies since it is directly related to the heat transfer
coefficient and the power requirements of the pump or fan.

20



TABLE 6-1

Dynamic viscosities of some fluids
at 1 atm and 20°C (unless

otherwise stated)

Dynamic Viscosity

Fluid w, Kg/m-s
Glycerin:
—20°C 134.0
0°C 10.5
20°C 1.52
40°C 0.31
Engine oil:
SAE 10W 0.10
SAE 10W30 0.17
SAE 30 0.29
SAE 50 0.86
Mercury 0.0015
Ethyl alcohol 0.0012
Water:
0°C 0.0018
20°C 0.0010
100°C (liquid) 0.00028
100°C (vapor) 0.000012
Blood, 37°C 0.00040
Gasoline 0.00029
Ammonia 0.00015
Air 0.000018
Hydrogen, O°C 0.0000088
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THERMAL BOUNDARY LAYER

A thermal boundary layer develops when a fluid at a specified temperature
flows over a surface that is at a different temperature.

Thermal boundary layer: The flow region over the surface in which the
temperature variation in the direction normal to the surface is significant.

The thickness of the thermal boundary layer &, at any location along the
surface is defined as the distance from the surface at which the temperature

difference T - T, equals 0.99(T - T,).

T, Free-stream T,
.
!/ Thermal
P | boundary
e o T layer
X 5

i} |
e e B T B SRR
|

I, +099%7T,-T)
Thermal boundary layer on a flat plate (the
fluid is hotter than the plate surface).

The thickness of the thermal
boundary layer increases in the
flow direction, since the effects
of heat transfer are felt at
greater distances from the
surface further down stream.

The shape of the temperature
profile in the thermal boundary
layer dictates the convection
heat transfer between a solid
surface and the fluid flowing
over it.
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Prandtl Number

The relative thickness of the velocity and the thermal boundary layers
IS best described by the dimensionless parameter Prandtl number

Pr =

Molecular diffusivity of momentum ,, MG,

Molecular diffusivity of heat o K

TABLE 6-2

Typical ranges of Prandtl numbers
for common fluids

Fluid Pr
Liquid metals 0.004-0.030
Gases 0.7-1.0

Water 1.7-13.7

Light organic fluids 5-50

Oils 50-100,000
Glycerin 2000-100,000

The Prandtl numbers of gases are
about 1, which indicates that both
momentum and heat dissipate
through the fluid at about the same
rate.

Heat diffuses very quickly in liquid
metals (Pr << 1) and very slowly in
oils (Pr >> 1) relative to momentum.

Consequently the thermal boundary
layer is much thicker for liquid metals
and much thinner for oils relative to
the velocity boundary layer.
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Ludwig Prandtl (1875-1953), was a
German Physicist famous for his work
in aeronautics, born in Freising,
Bavaria. His discovery in 1904 of the
Boundary Layer which adjoins the
surface of a body moving in a fluid led
to an understanding of skin friction
drag and of the way in which
streamlining reduces the drag of
airplane wings and other moving
bodies. Prandtl’s work and decisive
advances in boundary layer and wing
theories became the basic material of
aeronautics. He also made important
contributions to the theories of
supersonic flow and of turbulence, and
contributed much to the development
of wind tunnels and other
aerodynamic equipment. The
dimensionless Prandtl number was
named after him.
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LAMINAR AND Laminar flow is encountered when

highly viscous fluids such as oils flow

TU R B U |_ E NT F L OWS in small pipes or narrow passages.

\
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Dwve injection

(b)) Turbulent flow




Reynolds Number

The transition from laminar to turbulent
flow depends on the geometry, surface
roughness, flow velocity, surface
temperature, and type of fluid.

The flow regime depends mainly on the
ratio of inertia forces to viscous forces
(Reynolds number).

[nertial forces VaveD f"“'ﬁ;—"r‘}

1,.: = —

Viscous forces L v
N (]
(] ]
[
Vavg
ﬁr L

At large Reynolds numbers, the inertial
forces, which are proportional to the
fluid density and the square of the fluid
velocity, are large relative to the viscous
forces, and thus the viscous forces
cannot prevent the random and rapid
fluctuations of the fluid (turbulent).

At small or moderate Reynolds
numbers, the viscous forces are large
enough to suppress these fluctuations
and to keep the fluid “in line” (laminar).

Critical Reynolds number, Re_,:
The Reynolds number at which the
flow becomes turbulent.

The value of the critical Reynolds
number is different for different
geometries and flow conditions.

The Reynolds number can be
viewed as the ratio of inertial
forces to viscous forces
. acting on a fluid element.
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Osborne Reynolds (1842-1912), an
English engineer and physicist best
known for his work in the fields of
hydraulics and hydrodynamics, was
born in Belfast. Ireland. Reynolds’
studies of condensation and the
transfer of heat between solids and
fluids brought about radical revisions
in boiler and condenser design, and his
work on turbine pumps laid the
foundation for their rapid
development. His classical paper on
“The Law of Resistance in Parallel
Channels™ (1883) investigated the
transition from smooth, or laminar, to
turbulent flow. In 1886 he also
formulated “The Theory of
Lubrication™ and later in 1889, he
developed a mathematical framework
which became the standard in
turbulence work. His other work
included the explanation of the
radiometer and an early absolute
determination of the mechanical
equivalent of heat. The dimensionless
Reynolds number. which provides a
criterion for dynamic similarity and
for correct modeling in many flud
flow experiments, i1s named after him.
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HEAT AND MOMENTUM TRANSFER IN
TURBULENT FLOW

Most flows encountered in engineering practice are turbulent, and thus it is important to
understand how turbulence affects wall shear stress and heat transfer.

However, turbulent flow is a complex mechanism dominated by fluctuations, and the
theory of turbulent flow is still not fully understood.

Therefore, we must rely on experiments and the empirical or semi-empirical correlations
developed for various situations.

Turbulent flow is characterized by disorderly and
rapid fluctuations of swirling regions of fluid, called
eddies, throughout the flow.

These fluctuations provide an additional (a) Before turbulence  (b) After turbulence
mechanism for momentum and ener ransfer.
echanism for momentum and energy transfe FIGURE 6-23

The swirling eddies transport mass, momentum,
and energy to other regions of flow much more
rapidly than molecular diffusion, greatly enhancing
mass, momentum, and heat transfer.

The intense mixing in turbulent flow
brings fluid particles at different
temperatures into close contact,
and thus enhances heat transfer.

Turbulent flow is associated with much higher

values of friction, heat transfer, and mass transfer

coefficients. 28



average value u and a fluctuating component u'= u=1u + u'’

v=0 +v.P=P+P.andT=T+T

Noting that force in a given direction is equal to the rate of change of mo-
mentum in that direction, the horizontal force acting on a fluid element above
dA due to the passing of fluid particles through dA is 6F = (pv'dA)(—u') =
—pu'v'dA. Therefore, the shear force per unit area due to the eddy motion of

fluid particles F/dA = —pu'v' can be viewed as the instantaneous turbulent
shear stress. Then the turbulent shear stress can be expressed as
Tu = —pu'v’ where u'v’ is the time average of the product of the fluctuating VA

velocity components #” and v*. Similarly, considering that # = ¢,T represents
the energy of the fluid and 7" is the eddy temperature relative to the mean
value, the rate of thermal energy transport by turbulent eddies is f}mrh =pct' T,
Note that u'v" # 0 even though #" = 0 and ¢" = 0 (and thus «'¢" = 0), and
experimental results show that #’¢” is usually a negative quantity. Terms such
as —pu'v" or —pu'” are called Reynolds stresses or turbulent stresses.

i, FIGURE 6-25

i . . .
Fluid particle moving upward through
a differential area dA as a result of the
FIGURE 6-24 velocity fluctuation ¢,

Fluctuations of the velocity

component i with time at a

specified location in . 29
turbulent flow. Time, 1
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T du : - T
Toab — —PUY = ’urr‘}_‘k and Qb — PCp vl = _;‘-_; E (6-15)

where u, 1s called the turbulent (or eddy) viscosity, which accounts for mo-
mentum transport by turbulent eddies, and £, 1s called the turbulent (or eddy)

thermal conductivity, which accounts for thermal energy transport by turbulent

eddies. Then the total shear stress and total heat flux can be expressed conve-
niently as

= (u+ }du
" total S ay

(v + }6}H (6-16)
= I by — —
p(v + v, oy

and

. _ al aT
Grotal — —(k + k) d_1 = —pcpla + ci’;lg (6-17)

where v, = u/p 1s the kinematic eddy viscosity (or eddy diffusivity of mo-
mentum) and «, = k/pc,, is the eddy thermal diffusivity (or eddy diffusivity
of heat).
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VA FIGURE 6-26

The velocity gradients at the wall, and
thus the wall shear stress, are much
larger for turbulent flow than they are
for laminar flow, even though the
turbulent boundary layer is thicker
than the laminar one for the same
value of free-stream velocity.

YY

Laminar flow

VA

Turbulent flow
Note that molecular diffusivities v and « (as well as p and k) are fluid prop-
erties, and their values can be found listed in fluid handbooks. Eddy diffusivi-
ties v, and o, (as well as u, and k,), however are nof fluid properties and their
values depend on flow conditions. Eddy diffusivities »; and «, decrease towards
the wall, becoming zero at the wall. Their values range from zero at the wall to
several thousand times the values of molecular diffusivities in the core region.
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DERIVATION OF DIFFERENTIAL

CONVECTION EQUATIONS

In this section we derive the governing equations of fluid flow in the bound-
ary layers. To keep the analysis at a manageable level, we assume the flow to
be steady and two-dimensional, and the fluid to be Newtonian with constant
properties (density, viscosity, thermal conductivity, etc.).

Consider the parallel flow of a fluid over a surface. We take the flow direc-
tion along the surface to be x and the direction normal to the surface to be y,
and we choose a differential volume element of length dx, height dvy, and unit
depth in the z-direction (normal to the paper) for analysis (Fig. 6-27). The
fluid flows over the surface with a uniform free-stream velocity V, but the ve-
locity within boundary layer is two-dimensional: the x-component of the ve-
locity is u, and the y-component is v. Note that « = u(x, v) and v = v(x, y) in
steady two-dimensional tflow.

Next we apply three fundamental laws to this fluid element: Conservation of
mass, conservation of momentum, and conservation of energy to obtain the con-
tinuity, momentum, and energy equations for laminar flow in boundary layers.

v —
' — Velocity

boundary

v
1 +Edﬁ
| i B |
1 1
. E
: 1 a
i
i j u+de
Xy dax
v
FIGURE 6-27

Differential control volume used in the
derivation of mass balance in velocity
boundary layer in two-dimensional
flow over a surface.
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The Continuity Equation

The conservation of mass principle is simply a statement that mass cannot be
created or destroyed during a process and all the mass must be accounted for
during an analysis. In steady flow. the amount of mass within the control vol-
ume remains constant. and thus the conservation of mass can be expressed as

(6-18)

Rate of mass flow _ Rate of mass flow
into the control volume out of the control volume

Noting that mass flow rate is equal to the product of density, average velocity.
and cross-sectional area normal to flow, the rate at which fluid enters the con-
trol volume from the left surface is pu(dy - 1). The rate at which the fluid
leaves the control volume from the right surface can be expressed as

p(H + % dx) (dv-1) (6-19)

Repeating this for the y direction and substituting the results into Eq. 6—18. we
obtain

puldy < 1) + pridx - 1) = p(ﬁ + %dx){d}! 1)+ p(v + %d}-‘){dx - 1) (6-20)

Simplifying and dividing by dx - dy - 1 gives
du  dv
—_t =40 (6-21)
dx  dy
This is the conservation of mass relation in differential form, which is
also known as the continuity equation or mass balance for steady two-
dimensional flow of a fluid with constant density.
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The Momentum Equations

The differential forms of the equations of motion in the velocity boundary
layer are obtained by applying Newton’s second law of motion to a differen-
tial control volume element in the boundary layer. Newton’s second law is an
expression for momentum balance and can be stated as the net force acting on
the control volume is equal to the mass times the acceleration of the fluid ele-
ment within the control volume, which is also equal to the net rate of momen-
tum outflow from the control volume.

We express Newton’s second law of motion for the control volume as
0559y epoeomcion) = (ot o ) (622
or
om * Gy = Foyface. v T Frogy x (6-23)
where the mass of the fluid element within the control volume is
om = p(dx - dy - 1) (6-24)

Noting that flow is steady and two-dimensional and thus # = u(x, y). the total
differential of u is
au du

diu=—dx +—d 6-25
i &x"x 3y v ( )

Then the acceleration of the fluid element in the x direction becomes

i
JT=d_H=a_H{?rI ﬁi_uﬁ_‘_l)&_u {E_EE}
Toodt axdr avdt dx ay
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FIGURE 6-28 Xy = dx
During steady flow. a fluid may not FIGURE 629
accelerate in time at a fixed point, but B
It may accelerate in space. Ditferential control volume used in the

derivation of x-momentum equation in

ar aP ar AP velocity boundary layer in two-
Foytace.x = (a dv)(dx Y e (a dx)(d}-' 1) = (a - a)(dx “dy - 1) dimensional flow over a surface.
u P
= (‘U“a}.-i ax)(dx dv-1) (6-27)

since 7 = u(au/dy). Substituting Egs. 624, 6-26, and 6-27 into Eq. 623 and
dividing by dx - dy - 1 gives

au dut Fu AP
JEL I S + V1= u P (6-28)
o ax av v dx

This is the relation for the momentum balance in the x-direction, and is known

as the x-momentum equation. Note that we would obtain the same result if we

used momentum flow rates for the left-hand side of this equation instead of

mass times acceleration. If there is a body force acting in the x-direction, it can

be added to the right side of the equation provided that it is expressed per unit 35
volume of the fluid.



When gravity effects and other body forces are negligible and the boundary Iy
layer approximations are valid, applying Newton's second law of motion on =~ _V__

the volume element in the y-direction gives the y-momentum equation (o be

0P _

PR 0 (6-29)

That is, the variation of pressure in the direction normal to the surface is neg-
ligible, and thus P = P(x) and dP/dx = dP/dx. Then it follows that for a given

x, the pressure in the boundary layer is equal to the pressure in _lhc [ree stream, 1) Velocity components:
and the pressure determined by a separate analysis of fluid flow in the free U= v
stream (which is typically easier because of the absence of viscous effects) 2)  Velocity gradients:
can readily be used in the boundary layer analysis. W 59 <o
The velocity components in the free stream region of a flat plate are u = V = dx T ady

constant and v = 0. Substituting these into the x-momentum equations Jdu _ du
(Eq. 6-28) gives aP/ax = 0. Therefore, for flow over a flat plate, the pressure Iy g ar
remains constant over the entire plate (both inside and outside the boundary 3)  Temperature gradients:
layer). ar_ aT

dv T ox

FIGURE 6-30

Boundary layer approximations.
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Conservation of Energy Equation

The energy balance for any system undergoing any process 18 expressed as
Ei, — Eyy = AE em. Which states that the change in the energy content of a
system during a process is equal to the difference between the energy input
and the energy output. During a steady-flow process, the total energy con-
tent of a control volume remains constant (and thus AE e, = 0), and the
amount of energy entering a control volume in all forms must be equal to the
amount of energy leaving it. Then the rate form of the general energy equation
reduces for a steady-flow process to Ey, — Ey = 0.

Noting that energy can be transferred by heat, work, and mass only, the en-
ergy balance for a steady-flow control volume can be written explicitly as

{Ein o E:mlt}tv}r heat T {Ein o Eﬂllt}b‘}' work T {Ein o E‘Dut}b'}rmass =0 (6-30)

The total energy of a flowing fluid stream per unit mass is €gpeqm = 1 +
ke + pe where h is the enthalpy (which is the sum of internal energy and flow
energy), pe = gz is the potential energy, and ke = V%2 = (u* + 1*)/2 is the
kinetic energy of the fluid per unit mass. The kinetic and potential energies are
usually very small relative to enthalpy, and therefore it is common practice to
neglect them (besides, it can be shown that if kinetic energy is included in the
following analysis, all the terms due to this inclusion cancel each other). We
assume the density p, specific heat ¢, viscosity w, and the thermal conductiv-
ity k of the fluid to be constant. Then the energy of the fluid per unit mass can
be expressed as €geam = i = ¢,T.
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Energy is a scalar quantity, and thus energy interactions in all directions can
be combined in one equation. Noting that mass flow rate of the fluid entering
the control volume from the left is pu(dy-1), the rate of energy transfer to the
control volume by mass in the x-direction is, from Fig. 6-31,

. , . ) ﬂhhf?stream)r
(Ein - Ec:ut\"h}’ mass, ¥ ("nesveam)x - ('mf?su'eﬂm\"-‘-' t ax ~dx
alpu(dy - e, T oT _ou
—_ v = — _ _|_ _— H] —
Py dx ,r;fp(u e Tax)dxd} (6-31)

Repeating this for the y-direction and adding the results, the net rate of energy
transfer to the control volume by mass is determined to be

. : aT au aT av
(Ein B Enut)hy mass —  PCp (” ax + Ta )dxd}-‘ - fJCP( ﬂ + Ta ){f d‘!r

= —;;-:‘P(u g—j + v g) dxdy

since du/ox + ov/dy = 0 from the continuity equation.
The net rate of heat conduction to the volume element in the x-direction is

90, 9 aT
i x) = (’J'x( kidy-1) &x)dx

(6-33)

(6-32)

(Ein - Enut)byheat,.r = Qi - (Q'l +

Rasz d
= kKk—dx dv
ax?

Repeating this for the y-direction and adding the results, the net rate of energy
transfer to the control volume by heat conduction becomes

T T T ¥T
J Sdxdy + k &—d.xdx = R(a— + a—)dxcf}-‘ (6-34)

(Ein —E
ax’ ay* ax*

-m.lt)b}r heat — k—

Eheat out, ¥ Emass out, ¥

B

Ehfat in. x II 1 Eheatnut._r
I dy

Emass in,_t: : Ema-ssnut..!:
T _r:i_l.’ e

Eheat in, y Ema-ss in, v

FIGURE 6-31

The energy transfers by heat and mass
flow associated with a differential
control volume in the thermal
boundary layer in steady two-
dimensional flow.
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Then the energy equation for the steady two-dimensional flow of a fluid
with constant properties and negligible shear stresses is obtained by substitut-
ing Eqs. 6-32 and 634 into 630 to be

arT  aT ;TT a*T
PCy - ' =k . (6-35)
A oX dy L rJ_‘r-'

which states that the net energy convected by the fluid out of the control
volume is equal to the net energy transferred into the control volume by
heat conduction.

When the viscous shear stresses are not negligible, their effect is accounted
for by expressing the energy equation as

T T T 9T
pe (ua—x +v— J ) = R(a— + 6‘_) + pud (6-36)

where the viscous dissipation function @ is obtained after a lengthy analysis
(see an advanced book such as the one by Schlichting for details) to be

2 2 2
aul v Ju | dv
D=2 +\ =) | tl—=—+—= 6-37
[(a x) (ﬂ}-‘) (a}-' ax) ( )

Viscous dissipation may play a dominant role in high-speed flows, especially
when the viscosity of the fluid is high (like the flow of oil in journal bearings).
This manifests itself as a significant rise in fluid temperature due to the con-
version of the kinetic energy of the fluid to thermal energy. Viscous dissipa-
tion is also significant for high-speed flights of aircraft.

For the special case of a stationary fluid, # = v = 0, the energy equation re-
duces, as expected. to the steady two-dimensional heat conduction equation,

2 2
&T+6T
o’

0 (6-38)
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: EXAMPLE 6-1 Temperature Rise of 0il in a Journal Bearing

: The flow of oil in a journal bearing can be approximated as parallel flow be-
m tween two large plates with one plate moving and the other stationary. Such
m flows are known as Couette flow.

m Consider two large isothermal plates separated by 2-mm-thick oil film. The
B ypper plates moves at a constant velocity of 12 m/s, while the lower plate is sta-
™ tionary. Both plates are maintained at 20°C. (a) Obtain relations for the velocity
: and temperature distributions in the oil. (b) Determine the maximum tempera-
g ture in the oil and the heat flux from the oil to each plate (Fig. 6-25).

Moving
plate

" '/ V=12 mfs

—_—

LT @ g
L b L
L T

ﬂ T [ ; |

\— Stationary
plate

FIGURE 6-25

Schematic for Example 6-1.
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SOLUTION Parallel flow of oil between two plates is considered. The velocity
and temperature distributions, the maximum temperature, and the total heat
transfer rate are to be determined.

Assumptions 1 Steady operating conditions exist. 2 Oil is an incompressible
substance with constant properties. 3 Body forces such as gravity are negligible.
4 The plates are large so that there is no variation in the z direction.

Properties The properties of oil at 20°C are (Table A-10):

k=0145W/m-K and p = 0.800kg/m-s = 0.800N - s/m?

Analysis (a) We take the x-axis to be the flow direction, and y to be the normal
direction. This is parallel flow between two plates, and thus v = 0. Then the
continuity equation (Eq. 6-21) reduces to

— gu , ov _ du _ — uiv
Continuity: ax Ty = 0 — o 0 —u=uy)
Therefore, the x-component of velocity does not change in the flow direction
(i.e., the velocity profile remains unchanged). Noting that v = uly), v= 0, and
dPlax = O (flow is maintained by the motion of the upper plate rather than the
pressure gradient), the x-momentum equation (Eq. 6-28) reduces to

0

R TRt du _ dP N du _
- - - p r.UL' a}n l‘l" a}_‘z dJL' d}_-z

This is a second-order ordinary differential equation, and integrating it twice gives
uy) = Cy + G

The fluid velocities at the plate surfaces must be equal to the velocities of the
plates because of the no-slip condition. Therefore, the boundary conditions are
u(0) = 0 and w(l) =%, and applying them gives the velocity distribution to be

¥
uy) =7V
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Frictional heating due to viscous dissipation in this case is significant be-
cause of the high viscosity of oil and the large plate velocity. The plates are
isothermal and there is no change in the flow direction, and thus the tempera-
ture depends on yonly, T = Ty). Also, u = u(y) and v = 0. Then the energy
equation with dissipation (Egs. 6-36 and 6-37) reduce to

. 0T du ;-FT Ve
Energy: 0=k poe; + p(m) —> k = p(L)

since away = V/L. Dividing both sides by k and integrating twice give

I

T = =5

( "l«“) + Gy + C,

Applying the boundary conditions T(0) = T, and T(L) = T, gives the tempera-
ture distribution to be

T+ﬂ(-_ "'")
=T+ 5\~ 2

(b) The temperature gradient is determined by differentiating T(y) with re-

spect to ¥,
dr _ = ( S
d}-‘ 2kL L

The location of maximum temperature is determined by setting d7/dy = O and
solving for y,

ﬂ-r_ ”.-DI"PZ( Vv
11 ZL

dy ~ 2KL \ '_)zﬂ - Y=
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Therefore, maximum temperature will occur at mid plane, which is not surpris-
ing since both plates are maintained at the same temperature. The maximum
temperature is the value of temperature at y = L/2,

L wV2(L12  (L/2)2 py?
=T(Z|=T1,+ - =T, +
(z) TN 12 LT

(0.8 N - sfmfj:uzms)ﬂ( W\ _oc
8(0.145 W/m-°C) \1N-m/s B
Heat flux at the plates is determined from the definition of heat flux,

T,

max

=20+

dT _ e _ope
L T T AR 1)
(0.8 N - s/m2)(12 mst( W _
= — — —28.800 W/m?
2(0.002 m) IN - mis s L
ar o “ﬂi’ﬂz H"'E_.""E — — ¥ T 2
gy = —k{h et ZF.,L (1—2)= A —gp = 28,800 W/m

Therefore, heat fluxes at the two plates are equal in magnitude but opposite
in sign.




SOLUTIONS OF CONVECTION EQUATIONS

FOR A FLAT PLATE

Consider laminar flow of a fluid over a flat plate, as shown in Fig. 6-33. Sur-
laces that are slightly contoured such as turbine blades can also be approxi-
mated as flat plates with reasonable accuracy. The x-coordinate is measured

along the plate surface from the leading edge of the plate in the direction of

the flow, and y is measured from the surface in the normal direction. The fluid
approaches the plate in the x-direction with a uniform upstream velocity,
which 1s equivalent to the free stream velocity V.

When viscous dissipation is negligible, the continuity, momentum, and en-
ergy equations (Eqs. 6-21, 628, and 6-35) reduce for steady, incompressible,
laminar flow of a fluid with constant properties over a flat plate to

Continuity: &_u + E =0 (6-39)
' ax gy
2
Momentum: u ﬁ + v &_u =y ﬂ (6-40)

Energy: Hu—+tv—=ua—> (6-41)

with the boundary conditions (Fig. 6-26)

Atx =0 (0, v)y =V, 1o,vy=T.

Aty = 0 u(x,0)=0, v(x,0)=0,Tx 0 =T, (6-42)
Asy — oo ulx,00) =V, Tx o=T,

wix,=0
T, 0)=0
Tix,0y=T,

FIGURE 6-33

Boundary conditions for flow over a
flat plate.
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Noticing that the general shape of the velocity profile remains the same along
the plate, Blasius reasoned that the nondimensional velocity profile «/V should
remain unchanged when plotted against the nondimensional distance y/o,
where & is the thickness of the local velocity boundary layer at a given x. That
is, although both é and « at a given y vary with x, the velocity u at a fixed y/o
remains constant. Blasius was also aware from the work of Stokes that & is pro-
portional to Vux/V, and thus he defined a dimensionless similarity variable as

—_—
)

v
7=/ (6-43)

and thus #/V = function(n). He then introduced a stream function Ji(x, y) as
aifs P s
=— an V= ——
dy dx
so that the continuity equation (Eq. 6-39) is automatically satisfied and thus
eliminated (this can be verified easily by direct substitution). Next he defined
a function f(n) as the dependent variable as

i (6-44)

ifr
fio)=——7— (6-45)
VN vx/V
Then the velocity components become

o hxdf [v _d
g _dom _ ., jxd (V4 (6-46)

ay 9 ay N vdag v  dny

W hxdf vV [v 1 'ﬁ( df )

)= —=—WN[o— == [=f=o[—|n— 6-47
YT T \Var 2N 2N T a7 (6-47)
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By differentiating these u and v relations, the derivatives of the velocity com-
ponents can be shown to be

e p— »

ou_y X e (6-48)
ix  2x dp? dy  Nwxdpr o v dnf

w_ V. df [vd¥f  u VY
2

Substituting these relations into the momentum equation and simplifying, we
obtain
5 d*f N d*f
dn’ dn®
which i1s a third-order nonlinear differential equation. Therefore, the system
of two partial differential equations 18 transformed into a single ordinary dit-
ferential equation by the use of a similarity variable. Using the definitions

0 (6—49)

of fand n, the boundary conditions in terms of the similarity variables can be
expressed as

df =0, and 9 =1 (6-50)

(0)=0, —=
f dn|,=o dn|, -«

The transformed equation with its associated boundary conditions cannot be
solved analytically, and thus an alternative solution method is necessary. The
problem was first solved by Blasius in 1908 using a power series expansion ap-
proach, and this original solution is known as the Blasius solution. The prob-
lem is later solved more accurately using different numerical approaches, and
results from such a solution are given in Table 6-3. The nondimensional veloc-
ity profile can be obtained by plotting #/V against n. The results obtained by
this simplified analysis are in excellent agreement with experimental results.

TABLE 6-3

Similarity function fand its

derivatives for laminar boundary
layer along a flat plate.

df u d?f
i A
m dn
0 0 0 0.332
0.5 0.042 0.166 0.331
1.0 0.166 0.330 0.323
1.5 0.370 0.487 0.303
2.0 0650 0.630 0.267
2.5 0.996 0.751 0.217
3.0 1.397 0.846 0.161
3.5 1.838 0.913 0.108
4.0 2.306 0.956 0.064
45 2.790 0.980 0.034
5.0 3.283 0.992 0.016
5.5 3.781 0.997 0.007
6.0 4.280 0.999 0.002
oo oo 1 0
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Recall that we delined the boundary layer thickness as the distance from the
surface for which u/V = (.99, We observe from Table 6-3 that the value of n
corresponding to u/V = 0.99 is n = 4.91. Substituting n = 4.91 and y = § into
the definition of the similarity variable (Eq. 6-43) gives 4.91 = §\/V/vx. Then
the velocity boundary layer thickness becomes

491  491x
V Vi WV Re,

(6-51)

0=

since Re, = Vx/v, where x is the distance from the leading edge of the plate.
Note that the boundary layer thickness increases with increasing Kinematic
viscosity v and with increasing distance from the leading edge x, but it de-
creases with increasing free-stream velocity V. Therefore, a large free-stream
velocity suppresses the boundary layer and causes it to be thinner.,
The shear stress on the wall can be determined from its definition and the
ou/dy relation in Eq. 6-48:
du T"ﬁ‘

Ty = K=

— | — {5—52}
v ly=o a N owx dn? | =0

Substituting the value of the second derivative of fat n = 0 from Table 6-3 gives

lpuV  0.332pV?

T = 0.332V4 ] — (6-53)
" N VRe,
Then the local friction coefficient becomes
Ciy=——= 0.664 Re;'" (6-54)
. pV=i2

Note that unlike the boundary layer thickness, wall shear stress and the skin
friction coefficient decrease along the plate as x~172,
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Knowing the velocity profile, we are now ready to solve the energy equation
for temperature distribution for the case of constant wall temperature 7T, First
we introduce the dimensionless temperature # as
ox, y) = e — 1y (6-55)
V)= —/—"""7"7— .
- T.—T,
Noting that both T, and T, are constant, substitution into the energy equation
Eq. 641 gives
a6 @m 8
U—+ vV _—-=a— (6-56)
aI a"r‘ av—
Temperature profiles for flow over an 1sothermal flat plate are similar, just like
the velocity profiles, and thus we expect a similarity solution for temperature
to exist. Further, the thickness of the thermal boundary layer is proportional to
Nvx/V, just like the thickness of the velocity boundary layer. and thus the
similarity variable is also 7, and # = #(n7). Using the chain rule and substituting
the u and ¢ expressions from Eqgs. 646 and 647 into the energy equation gives

df doom 1 [V df \do 9 d2H )
yAardoon 1 _‘( /A f) Li ( ”) (6-57)
dndnox 2\ dn’ Jdn ay m; v

Simplifying and noting that Pr = va gives

2 470 | py 0 (6-58)
dn? dT?

with the boundary conditions #(0) = 0 and #(x) = 1. Obtaining an equation for

# as a function of 1 alone confirms that the temperature profiles are similar, and

thus a similarity solution exists. Again a closed-form solution cannot be ob-

tained for this boundary value problem, and it must be solved numerically.

The Energy
Equation
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[t is interesting to note that for Pr = 1., this equation reduces to Eq. 649 when
¢ is replaced by dffdn, which is equivalent to u/V (see Eq. 6—46). The boundary
conditions for 6 and dffdy are also identical. Thus we conclude that the velocity
and thermal boundary layers coincide, and the nondimensional velocity and
temperature profiles («/V and #) are identical for steady, incompressible, lami-
nar flow of a fluid with constant properties and Pr = 1 over an isothermal flat
plate (Fig. 6-34). The value of the temperature gradient at the surface (y = 0 or

1 = 0) in this case is, from Table 6-3, d#/dn = d*fldny* = 0.332.

Equation 6-58 is solved for numerous values of Prandtl numbers. For
Pr = 0.6, the nondimensional temperature gradient at the surface is found to

be proportional to Pr'”, and is expressed as
do ‘ =0332Pr'”
d]? r_|=|:|

The temperature gradient at the surface is

T o 9
- =(n—mﬁ‘ o
ﬂ'}-‘ y=0 a}-‘ y=0 dT] =0 a}! y=0

— 0332 PA(T. — Ty | L
- = T\

Then the local convection coefficient and Nusselt number become

g, —keTIay)|y= e [Y
h, = = =0.332Prk, |
Ts —T. Ts - T \I "

(6-59)

(6-60)

(6-61)

Velocity or thermal
boundary layer

wo~, )

FIGURE 6-34

When Pr = 1, the velocity and ther-
mal boundary layers coincide, and
the nondimensional velocity and
temperature profiles are identical for
steady, incompressible, laminar flow
over a flat plate.
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and

.x )
Nu, = T =0.332Pr'?Re!? Pr>0.6 (6-62)
The Nu, values obtained from this relation agree well with measured values.
Solving Eq. 658 numerically for the temperature profile for different
Prandtl numbers, and using the definition of the thermal boundary layer, it is
determined that /8, = Pr'’3. Then the thermal boundary layer thickness
becomes

f;il, = p 3 = p |".1".,_"R_ (6-63)
1/ - e;

Note that these relations are valid only for laminar flow over an isothermal flat
plate. Also, the effect of variable properties can be accounted for by evaluat-
ing all such properties at the film temperature defined as 7, = (7 + T..)/2.

The Blasius solution gives important insights, but its value is largely histor-
ical because of the limitations it involves. Today both laminar and turbulent
[lows over surfaces are routinely analyzed using numerical methods.
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NONDIMENSIONALIZED CONVECTION
EQUATIONS AND SIMILARITY

When viscous dissipation is negligible, the continuity, momentum, and energy
equations for steady, laminar flow of a fluid with constant properties are given
by Eqgs. 6-28, 6-29, and 6-35.

These equations and the boundary conditions can be nondimensionalized by
dividing all dependent and independent variables by relevant and meaningful
constant quantities: all lengths by a characteristic length L (which is the length
for a plate), all velocities by a reference velocity V (which is the free stream
velocity for a plate), pressure by pV? (which is twice the free stream dynamic
pressure for a plate), and temperature by a suitable temperature difference
(which is T, — T for a plate). We gel

X y u v P r—-T,
== y¢F== py¥=— p¥=—. P¥=—" and T¥= —/———

L~ L 4 V pV? - T.—T,
where the asterisks are used to denote nondimensional variables. Introducing
these variables into Egs. 628, 6-29, and 6-35 and simplitying give

L ou* - ov*
Continuity: P + —&}! =0 (6-64)
du* out 1 du*  gp+
Mom ; + v# = — —
Momentum u*—ax el av* _ Rey 9y s R (6-65)
aT* aT* A
; ' £ 3 + It — |
Energy u Py L oy*  Re,Pr ay? (6-66)

with the boundary conditions

w0, v¥) =1, wu*x* 0)=0, w¥x* c0)=1, v*x* 0)=0, (6-67)
(0, v*%) =1, THx*,0)=0, THx* o) =1
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where Re; = VL/v is the dimensionless Reynolds number and Pr = v/a is the
Prandtl number. For a given type of geometry. the solutions of problems with
the same Re and Nu numbers are similar, and thus Re and Nu numbers serve
as similarity parameters. Two physical phenomena are similar if they have the
same dimensionless forms of governing differential equations and boundary
conditions (Fig. 6-35).

A major advantage of nondimensionalizing is the significant reduction in
the number of parameters. The original problem involves 6 parameters (L, V,
T.. T, v. o), but the nondimensionalized problem involves just 2 parameters
(Re; and Pr). For a given geometry, problems that have the same values for the
similarity parameters have identical solutions. For example, determining the
convection heat transfer coefficient for flow over a given surface requires nu-
merical solutions or experimental investigations for several fluids, with sev-
eral sets of velocities, surface lengths, wall temperatures, and free stream
temperatures. The same information can be obtained with far fewer investiga-
tions by grouping data into the dimensionless Re and Pr numbers. Another ad-

vantage of similarity parameters is that they enable us to group the results of
a large number of experiments and to report them conveniently in terms of

such parameters (Fig. 6-36).

Parameters before nondimensionalizing
LV.T,T,.v.o
Parameters after nondimensionalizing:
Re, Pr

FIGURE 6-36

The number of parameters is reduced
greatly by nondimensionalizing the
convection equations.

Vi Re,
Water ™ <>

—_

VE

Ar I©
|

Re,
< L :r-l

d

If Rel = Reg, then Cfl = Cfl

FIGURE 6-35

Two geometrically similar
bodies have the same value of
friction coefficient at the same
Reynolds number.
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FUNCTIONAL FORMS OF FRICTION
AND CONVECTION COEFFICIENTS

The three nondimensionalized boundary layer equations (Eqgs. 664, 663,
and 6-66) involve three unknown functions «*, v*, and T%, two independent
variables x* and y*, and two parameters Re; and Pr. The pressure P*(x*) de-
pends on the geometry involved (it 1s constant for a flat plate), and it has the
same value inside and outside the boundary layer at a specified x*. Therefore,
it can be determined separately from the free stream conditions, and dP*/dx*
in Eq. 6635 can be treated as a known function of x*. Note that the boundary
conditions do not introduce any new parameters.
For a given geometry, the solution for #* can be expressed as

u* = fi(x*, v¥ Rep) (6-68)

Then the shear stress at the surface becomes

o, du
v My

_ #Vaux

_ IV o Rey) (6-69)
_ KT _ Y x* Re, _
yoo  Looy* L

y=0

Substituting into its definition gives the local friction coefficient,

Tw pVIL
Cix= a5 =
pVe/2  pV=el2

f2 (I*, REL) = RLEL ﬁ(.x*, REL) =f3(I*, REL\J (6-70)

Thus we conclude that the friction coetficient for a given geometry can be ex-
pressed in terms of the Reynolds number Re and the dimensionless space
variable x* alone (instead of being expressed in terms of x, L, V, p, and p).
This is a very significant finding, and shows the value of nondimensionalized
equations.
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Similarly, the solution of Eq. 666 for the dimensionless temperature T for
a given geometry can be expressed as
T# = gy(x*, v*, Rey, Pr) (6-71)
Using the definition of 7%, the convection heat transfer coefficient becomes

_ — k@Tlay)|y=0  — KT.—T,) §T*

Y T,-T.  LT,—T. a*

_ kor*
w=0 [ gy*

(6-72)

=0
Substituting this into the Nusselt number relation gives [or alternately, we can
rearrange the relation above in dimensionless form as hL/k = (9T*/0y*)lyi—g
and define the dimensionless group AL/k as the Nusselt number]

_hL _9T*
ok ay*

= g.(x*, Re;. Pr) (6-73)

y=0

Nu,

Note that the Nusselt number is equivalent to the dimensionless temperatire
gradient at the surface, and thus it is properly referred to as the dimensionless
heat transfer coeflicient (Fig. 6-37). Also, the Nusselt number for a given geom-
etry can be expressed in terms of the Reynolds number Re, the Prandtl number
Pr. and the space variable x*, and such a relation can be used for different fluids
lowing at different velocities over similar geometries of different lengths.

The average friction and heat transfer coeflicients are determined by inte-
grating Cp, and Nu, over the surface of the given body with respect to x* from
0 to 1. Integration removes the dependence on x*, and the average friction co-
efficient and Nusselt number can be expressed as

Cr= fui(Rep) and Nu = gi(Re;, Pr) (6-74)

T:—:

—}I.I.'I
—:’..:I.-"I
E = MNu
yE 4‘;’( e &_‘FH . B
. E _,YH ___:._'z_‘_'___,-o-'-" }l =
Laminar
FIGURE 6-37

The Nusselt number 1s equivalent to
the dimensionless temperature
gradient at the surface.
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These relations are extremely valuable as they state that for a given geometry,
the friction coefficient can be expressed as a function of Reynolds number
alone, and the Nusselt number as a function of Reynolds and Prandtl numbers
alone (Fig. 6-38). Therefore, experimentalists can study a problem with a
minimum number of experiments, and report their friction and heat transfer
coefficient measurements conveniently in terms of Reynolds and Prandtl num-
bers. For example, a friction coefficient relation obtained with air for a given
surface can also be used for water at the same Reynolds number. But it should
be kept in mind that the validity of these relations is limited by the limitations
on the boundary layer equations used in the analysis.

The experimental data for heat transfer is often represented with reasonable
accuracy by a simple power-law relation of the form

Nu = C Ref Pr” (6-75)

where m and n are constant exponents (usually between 0 and 1), and the
value of the constant C depends on geometry. Sometimes more complex rela-
tions are used for better accuracy.

Local Nusselt number:
Nu, = function (x*, Re;, Pr)
Average Nusselt number:
Nu = function (Re;, Pr)
A common form of Nusselt number:
Nu = C Re["Pr"

FIGURE 6-38

For a given geometry, the average

Nusselt number 1s a function of

Reynolds and Prandtl numbers.
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ANALOGIES BETWEEN MOMENTUM
AND HEAT TRANSFER

In forced convection analysis, we are primarily interested in the determination
of the quantities Cy(to calculate shear stress at the wall) and Nu (to calculate
heat transfer rates). Therefore, it 1s very desirable to have a relation between
Crand Nu so that we can calculate one when the other is available. Such rela-
tions are developed on the basis of the similarity between momentum and heat
transfers in boundary layers, and are known as Reynolds analogy (Fig. 6-21)
and Chilton—Colburn analogy.

Reconsider the nondimensionalized momentum and energy equations for
steady, incompressible, laminar flow of a fluid with constant properties and negli-
gible viscous dissipation (Egs. 6-65 and 6-66). When Pr = | (which is approxi-
mately the case for gases) and dP*/dx* = O (which 18 the case when, u = V =
constant in the free stream, as in flow over a flat plate), these equations simplity to

Ths uE | 2
Momentum: u*f;? + y*g}_‘* = Re, g;i (6-76)
_ aT* | aT* 1 §'T*
Energy: ”*ﬁ + U*ﬂ}-‘* = Re, % (6-77)

which are exactly of the same form for the dimensionless velocity u* and tem-
perature T*. The boundary conditions for «#* and 7% are also identical. There-
fore, the functions u* and T must be identical. and thus the first derivatives
of u* and T at the surface must be equal to each other.,

du*

du* _oT*
av*

= — 6-78
y=0  OVF (6-76)

y=0
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Then from Egs. 669, 670, and 6—73 we have
RCL

g

Cr = Nu, (Pr=1) (6-79)
which is known as the Reynolds analogy (Fig. 6-39). This is an important
analogy since it allows us to determine the heat transfer coefficient for fluids
with Pr = 1 from a knowledge of friction coeflicient which is easier to mea-

sure. Reynolds analogy is also expressed alternately as
(—_;r'_ x
= St

g il 4

(Pr=1) (6-80)

where

__h _ Nu
pc,V RePr

St (6-81)

is the Stanton number (Fig. 6—40), which is also a dimensionless heat trans-
fer coefficient.

Reynolds analogy is of limited use because of the restrictions Pr = 1 and
dP*fox* = 0 on it, and it is desirable to have an analogy that is applicable over
a wide range of Pr. This is done by adding a Prandtl number correction.

The friction coefficient and Nusselt number for a flat plate were determined
in Section 6-8 to be

Cs, = 0.664 Re; ! and Nu, = 0.332 Pr'” Re!? (6-82)

Taking their ratio and rearranging give the desired relation, known as the
modified Reynolds analogy or Chilton—Colburn analogy,
C,

X . K .
N T

Re .
~ L _ —1/3 .
Cr = Nu, P1 ol 5

3 (6-83)

Profiles: u¥=T%
Gradients: ou*
ay*
& F* = E'
_ Re;
Analogy: Cﬁ 3
FIGURE 6-39

When Pr = I and dP*/ax* = (), the
nondimensional velocity and
temperature profiles become identical,
and Nu is related to by Reynolds

analogy.




for 0.6 << Pr << 60. Here jg is called the Colburn j-factor (Fig. 6—1). Although
this relation is developed using relations for laminar flow over a flat plate (for
which dP*/dx* = 0), experimental studies show that it is also applicable ap-
proximately for turbulent flow over a surface, even in the presence of pressure
gradients. For laminar flow, however, the analogy is not applicable unless
dP*/ax* = 0. Therefore, it does not apply to laminar tflow in a pipe. Analogies
between C;and Nu that are more accurate are also developed, but they are
more complex and beyond the scope of this book. The analogies given above
can be used for both local and average quantities.
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Sir Thomas Edward Stanton
(1865-1931), was a British engineer,
born at Atherstone in Warwickshire,
England. From 1891 to 1896 he workec
in Osborne Reynolds’ laboratory at
Owens College, Manchester, England.
Stanton’s main field of interest was
fluid flow and friction, and the related
problem of heat transmission. From
1902 to 1907 he executed a large
research program concerning wind
forces on structures, such as bridges
and roofs. After 1908, the year when
the Wright Brothers made their first
airplane flights in Europe, Stanton was
devoted to problems of airplane and
airship design and the dissipation of
heat from air-cooled engines. The
dimensionless heat transfer coefficient
Stanton number is named after him.
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Allan Philip Colburn (1904-1955),
an American engineer, was born in
Madison, Wisconsin. His research was
on condensation of water vapor from
saturated air streams. He brought
together for the first time in American
engineering work the fundamentals of
momentum, heat and mass transfer
along with thermodynamic principles
to deal with this complex problem.
The dimensionless empirical
parameter Colburn j-factor

(jy = St,Pr*”) is named after him.
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Some important results from convection equations

. 491  4091x
The velocity boundary layer thickness S Vim VR
The local skin friction coefficient Cry = o1 ~+ = 0.664 Re "'~

I, .
Local Nusselt number Nu, = —— = 0.332 Pr'"Re,” Pr > 0.6
. . 3] 4.91x
The thermal boundary layer thickness 8, = SRTERTIN:
r3 Pri®V/Re
Re, lr' A . . — h = Nu
Modified Reynold analogy  Re, i VA
: Ce = = Nu, P 0l — = St,Pr” = j,
or Chilton-Colburn analogy P2 2
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® EXAMPLE 6-2

Finding Convection Coefficient from Drag Measurement

Aiar
20°C, 7 m/s

W

FIGURE 6-33

Schematic for Example 6-2.

A 2-m x 3-m flat plate is suspended in a room, and is subjected to air flow par-
allel to its surfaces along its 3-m-long side. The free stream temperature and
velocity of air are 20°C and 7 m/s. The total drag force acting on the plate is
measured to be 0.86 N. Determine the average convection heat transfer coeffi-
cient for the plate (Fig. 6-33).
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SOLUTION A flat plate is subjected to air flow, and the drag force acting on it
is measured. The average convection coefficient is to be determined.

Assumptions 1 Steady operating conditions exist. 2 The edge effects are negli-
gible. 3 The local atmospheric pressure is 1 atm.

Properties The properties of air at 20°C and 1 atm are (Table A-15):
p=1.204kg/m’, C,=1.007kl/kg-K, Pr=0.7309

Analysis The flow is along the 3-m side of the plate, and thus the characteris-
tic length is L = 3 m. Both sides of the plate are exposed to air flow, and thus

the total surface area is
A, =2WL=22m)(3m) = 12 m?
For flat plates, the drag force is equivalent to friction force. The average friction
coefficient C; can be determined from Eq. 6-11,
pV?

Solving for Cr and substituting,

co_fr _ 0.86 N (lkg'mfsz
I A2 (1204 kg/mP)(12 m2)(7 m/s)¥2\ 1N

) = 0.00243

Then the average heat transfer coefficient can be determined from the modified
Reynolds analogy (Eq. 6-83) to be

, _ VG, _ 0.00243 (1.204 ke/m*)(7 m/s)(1007 J/kg - °C)

= 12.7 Wim?* - °C
2 Pr*” 2 0.7309%"

Discussion This example shows the great utility of momentum-heat transfer
analogies in that the convection heat transfer coefficient can be determined
from a knowledge of friction coefficient, which is easier to determine.
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Summary

Physical Mechanism of Convection
v Nusselt Number

Classification of Fluid Flows
Velocity Boundary Layer

v" Wall shear sttress
Thermal Boundary Layer

v Prandtl Number
Laminar and Turbulent Flows

v" Reynolds Number
Heat and Momentum Transfer in Turbulent Flow
Derivation of Differential Convection Equations
Solutions of Convection Equations for a Flat Plate
Nondimensionalized Convection Equations and Similarity
Functional Forms of Friction and Convection Coefficients
Analogies Between Momentum and Heat Transfer
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